• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Institute of Medical Biotechnology
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Chemie- und Bioingenieurwesen
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Stellenangebote
  • Lageplan
  • Hilfe im Notfall
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Chemie- und Bioingenieurwesen

Institute of Medical Biotechnology

Menu Menu schließen
  • About Us
    • Staff
    • Open Positions
    • Our Labs
    • Contact
    Portal About Us
  • Research
    • Research Groups
    • Collaborations
    • Publications
    Portal Research
  • Teaching
    • Lectures
    • Scientific Talks
    • Safety Inductions
    Portal Teaching
  1. Startseite
  2. Research
  3. Research Groups
  4. Muscle Opto-Biomechatronics
  5. The MechaMorph

The MechaMorph

Bereichsnavigation: Research
  • Research Groups
    • Muscle Opto-Biomechatronics
      • The MyoRobot
      • Tissue Regenerator (link)
      • The MechaMorph
      • The IsoStretcher
      • Virtual Laboratory
    • Tissue Engineering
    • Bioreactors in Tissue Engineering
    • Optical Technologies in Life Sciences
    • High-throughput Biology & Robophotonics
  • Collaborations
  • Publications

The MechaMorph

Contacts

Michael Haug

Dr. Michael Haug, Akad. Rat a.Z.

Group Leader

Medical Biotechnology
Opto-Biomechatronics

Raum: Room 02.042
Paul-Gordan-Str. 3
91052 Erlangen
Germany
  • Telefon: +49913185-23175
  • E-Mail: michael.haug@fau.de
  • Webseite: https://www.mbt.tf.fau.de
  • Instagram: Seite von Michael Haug
  • The MyoRobot
  • The TissueRegenerator
  • The IsoStretcher

The MechaMorph – may the Force be in your Images

Over decades, myology has aimed to obtain direct measures for muslce dysfunction, i.e. weakness, by using manual or tedious single fibre biomechatronics systems, e.g. to characterize maximum specific force or Ca2+ sensitivity of the conrtractile biopolymer bionsensors. Apart from immediate signaling effects on contractility, also structural changes to the sarcomeric polymer architecture during remodeling in chronic disease also sets structural limits to maximum force or biosensor response. By optimizing our multiphoton Second Harmonic Generation morphometry arrpoach to single fibre cytoarchitecture, we have repeatedly documented vast ultrastrucutral irregularities in diseased muscle fibres that may present a structural correlate to weakness. Therefore, SHG imaging can suggest weakness from disordered myofibrillar arrays.

But how to pove such a cause-effect scenario? It would require measuring force and subcellular structure at the same time in the same preparation.

In order to achieve this goal and provide a kind of ‚calibration‘ to our SHG image analysis to predict force from looking at structure, we engineered a miniaturized force transducer system that was inspired by our MyoRobot, i.e. involving voice coil technology, but would still fit between the two objectives of a multiphoton microscope for forward scattered myosin SHG imaging. Our MechaMorph (see figure) consists of two parallel troughs connected to a force transducer and a voice coil actutator pin to take up a single muscle fibre and tightly place it with polymer fibre clips.

As shown in the middle part of the figure, a single normally structured wt fibre and a disordered fibre from a dystrophic mdx mouse were analyzed regarding strucutral parameters of latice order (cosine angle sums, CAS; vernier density, VD) and recording graded pCa force responses. Lattice idsorder (low CAS, high VD) is reflected by decreased biosensor Ca2+ sensitivity (Schneidereit et al. 2018). Taking advantage of less ordered cytoarchitecture in mdx fibres the range of CAS and VD values could be expanded to areas not seen in healthy, nromally structured wt fibres. The right part of the figure shows our calibration data, confirming that fibres with less ordered structure (mdx, red; and some wt fibres) were always associated with lower maximum force force capacity.

The MechaMorph is a valuable tool to obtain calibration optics-to-biomechatronics data sets that we currently expand also to other disease models than mdx. It can even be applied to other tissues, e.g. heart strips or skin strips which will enable to obtain a ‚image-based prediction-classifier for biomechanical tissue performance‘.

Schematics and design of the MechaMorph systems technology (left) to allow for simultaneous SHG and isometric force recordings in single fibres from healthy (wt) and dystrophic (mdx) muscle, where the former is characterized by regular ultrastructure (high CAS, low VD) and the latter by deranged sarcomere latticew in 3D (low CAS, high VD). In addition, low regularity (dystrophic) is accompanied by compromised contractile biosensor Ca2+ sensitivity. Right, direct calibration of structure-function relationship with sarcomeric regularity determining foce output (Schneidereit et al. 2018).  

Reference:

Schneidereit D, Nübler S, Prlöß G, Reischl B, et al. (2018) Optical prediction of single muscle fiber force production using a combined biomechatronics and second harmonic generation imaging approach. Light Sci Appl. 7:79. doi: 10.1038/s41377-018-0080-3.

 

Weitere Hinweise zum Webauftritt

Studying Life Science Engineering…

Macrophages in the Sky? This is the sensational title of the LSE promo video, meant to fuel your imagination and curiosity about this field of study. If it did not fail doing so, feed yourself more information by watching „why study LSE“ and „what is LSE“, adjacent to the trailer.

Macrophages in the Sky?

https://www.mbt.tf.fau.de/files/2019/12/Fresszellen-über-Erlangen-Life-Science-Engineering-studieren-in-Erlangen.mp4

Why study LSE?

https://www.mbt.tf.fau.de/files/2019/12/Warum-solltest-Du-Life-Science-Engineering-studieren-.mp4

What is LSE?

https://www.mbt.tf.fau.de/files/2019/12/Was-ist-Life-Science-Engineering-.mp4
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Schlossplatz 4
91054 Erlangen
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Nach oben